2019 年全国研究生入学统一考试

数学(一)

一、选择题: 1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位上.

1.当 $x \to 0$ 时,若 $x - \tan x$ 与 x^k 是同阶无穷小,则 k= ()

- A.1
- B.2
- C.3
- D.4

2.设函数
$$f(x) = \begin{cases} x|x|, x \le 0 \\ x \ln x, x > 0 \end{cases}$$
, 则 $x = 0$ 是 $f(x)$ 的().

- A.可导点,极值点
- B.不可导的点,极值点
- C.可导点, 非极值点
- D.不可导点,非极值点
- 3、设 $\{u_n\}$ 是单调增加的有界数列,则下列级数中收敛的是(

$$A.\sum_{n=1}^{\infty}\frac{u_n}{n}$$

$$B. \sum_{n=1}^{\infty} \left(-1\right)^n \frac{1}{u_n}$$

$$C. \sum_{n=1}^{\infty} \left(1 - \frac{u_n}{u_{n+1}} \right)$$

D.
$$\sum_{n=1}^{\infty} \left(u_{n+1}^2 - u_n^2 \right)$$

4、设函数 $Q(x,y)=\frac{x}{y^2}$, 如果对于上半平面 (y>0) 内任意有向光滑封闭曲线 C 都有

$$\oint P(x,y)dx + Q(x,y)dx = 0$$
, 那么函数 $P(x,y)$ 可取为 (

A.
$$y - \frac{x^2}{v^3}$$

$$B.\frac{1}{y} - \frac{x^2}{y^3}$$

$$c.\frac{1}{x} - \frac{1}{y}$$

$$D. x - \frac{1}{y}$$

5、设 A 是三阶实对称矩阵,E 是三阶单位矩阵,若 $A^2+A=2E$,且 |A|=4,则二次型 X^TAX 的规范形是()

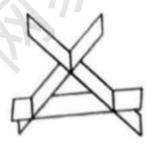
A.
$$y_1^2 + y_2^2 + y_3^2$$

B.
$$y_1^2 + y_2^2 - y_3^2$$

C.
$$y_1^2 - y_2^2 - y_3^2$$

$$D. - y_1^2 - y_2^2 - y_3^2$$

6 、 如 图 所 示 , 有 三 张 平 面 两 两 相 交 , 交 线 相 互 平 行 , 它 们 的 方 程 $a_{il}x+a_{i2}y+a_{i3}z=d_i(i=1,2,3)$ 组成的线性方程组的系数矩阵和增广矩阵分别记为 A,\overline{A} ,则().



$$A. r(A) = 2, r(\overline{A}) = 3$$

$$B. r(A) = 2, r(\overline{A}) = 2$$

$$c. r(A) = 1, r(\overline{A}) = 2$$

D.
$$r(A) = 1, r(\overline{A}) = 1$$

7、设 A, B 为随机事件,则 P(A) = P(B)的充分必要条件是()

A.
$$P(A \cup B) = P(A) + P(B)$$

$$B. P(AB) = P(A)P(B)$$

c.
$$P(A\overline{B}) = P(B\overline{A})$$

$$D. P(AB) = P(\overline{A}\overline{B})$$

- 8、设随机变量 X 与 Y 相互独立,且均服从正态分布 $N(\mu,\sigma^2)$.则 $P\{X-Y|<1\}$ ()
- A.与 μ 无关,而与 σ^2 有关
- B.与 μ 有关,而与 σ^2 无关
- C.与 μ , σ^2 都有关
- D.与 μ , σ^2 都无关
- 二、填空题: 9~14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位上.

9、设函数
$$f(u)$$
可导, $z = f(\sin y - \sin x) + xy$,则 $\frac{1}{\cos x} \cdot \frac{\partial z}{\partial x} + \frac{1}{\cos x} \cdot \frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$

- 10、微分方程 $2yy'-y^2-2=0$ 满足条件 y(0)=1 的特解为 y=______
- 11、幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} x^n$ 在 $(0,+\infty)$ 内的和函数 S(x)=_______

12、设
$$\Sigma$$
 为曲面 $x^2 + y^2 + 4z^2 = 4(z \ge 0)$ 的上侧,则 $\iint_{\Sigma} \sqrt{4 - x^2 - 4z^2} dx dy =$ _______

- 13、设 $A = (a_1, a_2, a_3)$ 为三阶矩阵,若 a_1, a_2 线性无关,且 $a_3 = -a_1 + 2a_2$,则线性方程组 AX = 0 的通解为_____
- 14、设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{x}{2}, 0 < x < 2, & F(x)$)为 X 的分布函数, E(X)为 X 0, 其他

的数学期望,则 $P{F(X)>E(X)-1}=$ _____

- 三、解答题: 15~23 小题, 共 94 分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤。
- 15、(本题满分 10 分)设函数 y(x)是微分方程 $y' + xy = e^{\frac{x^2}{2}}$ 2 满足条件 y(0) = 0 的特解. (1) 求 y(x):
- (2)求曲线 y = y(x)的凸凹区间及拐点.

- 16、(本题满分 10 分)设 a,b 为实数,函数 $z = 2 + ax^2 + by^2$ 在点(3, 4)处的方向导数中,沿方向 l = -3i 4j 的方向导数最大,最大值为 10.
- (1) 求常数 a,b;
- (2) 求曲面 $z = 2 + ax^2 + by^2 (z \ge 0)$ 的面积.
- 17、(本题满分 10 分)求曲线 $y = e^{-x} \sin x (x \ge 0)$ 与 x 轴之间形成图形的面积.

18、(本题满分 10 分)设
$$a_n = \int_0^1 x^n \sqrt{1-x^2} dx (n=0,1,2...)$$

(1)证明:数列
$$\left\{a_{n}\right\}$$
 单调减少,且 $a_{n}=\frac{n-1}{n+2}a_{n-2}\left(n=2,3...\right)$;

(2)求极限
$$\lim_{n\to\infty}\frac{a_n}{a_{n-1}}$$
.

- 19、(本题满分 10 分)设 Ω 是由锥面 $x^2 = (y-z)^2 = (1-z)^2 (0 \le z \le 1)$ 与平面 z = 0 围成的锥体,求 Ω 的形心坐标.
- 20、(本题满分 11 分)设向量组 $a_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, a_2 \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, a_3 \begin{pmatrix} 1 \\ a \\ 3 \end{pmatrix}$ 为 R^3 空间的——个基, $\beta = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 在这

组基下的坐标为
$$\begin{pmatrix} b \\ c \\ 1 \end{pmatrix}$$
.

- (I) 求 a,b,c;
- (2) 证明: a_2, a_3, β 也为 R^3 空间的一-个基, 并求 a_2, a_3, β 到 a_1, a_2, a_3 的过渡矩阵.

21、(本题满分 11 分)已知矩阵
$$A = \begin{pmatrix} -2 & 2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{pmatrix}$$
与 $B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{pmatrix}$ 相似.

- (1) 求 x,y;
- (2)求可逆矩阵 P,使得 $P^{-1}AP = B$.
- 22、(本题满分 11 分)设随机变量 X,Y 相互独立, X 服从参数为 1 的指数分布, Y 的概率分布为: $P\{Y=-1\}=P,\{Y=1\}=1-P,(0< P<1)$.令Z=XY.
- (1)求 Z 的概率密度;
- (2) p 为何值时, X,Z 不相关;
- (3) 此时, X,Z 是否相互独立.

23、(本题满分 11 分)设总体 X 的概率密度为
$$f(x,\sigma^2) = \begin{pmatrix} \frac{A}{\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2},x \geq \mu,} \\ 0, & x < \mu, \end{pmatrix}$$

其中 μ 是已知参数, σ 是未知参数,A 是常数, $X_1,X_2,...X_N$ 是来自总体 X 的简单随机样本.

- (1)求常数 A 的值;
- (2)求 σ^2 的最大似然估计量.